Assembly and integration of semiconductor nanowires for functional nanosystems
نویسندگان
چکیده
Central to the bottom-up paradigm of nanoscience, which could lead to entirely new and highly integrated functional nanosystems, is the development of effective assembly methods that enable hierarchical organization of nanoscale building blocks over large areas. Semiconductor nanowires (NWs) represent one of the most powerful and versatile classes of synthetically tunable nanoscale building blocks for studies of the fundamental physical properties of nanostructures and the assembly of a wide range of functional nanoscale systems. In this article, we review several key advances in the recent development of general assembly approaches for organizing semiconductor NW building blocks into designed architectures, and the further integration of ordered structures to construct functional NW device arrays. We first introduce a series of rational assembly strategies to organize NWs into hierarchically ordered structures, with a focus on the blown bubble film (BBF) technique and chemically driven assembly. Next, we discuss significant advances in building integrated nano electronic systems based on the reproducible assembly of scalable NW crossbar arrays, such as high-density memory arrays and logic structures. Lastly, we describe unique applications of assembled NW device arrays for studying functional nanoelectronic–biological inter faces by building well-defined NW-cell/tissue hybrid junctions, including the highly integrated NW–neuron interface and the multiplexed, flexible NW–heart tissue interface.
منابع مشابه
Inorganic semiconductor nanowires: rational growth, assembly, and novel properties.
Rationally controlled growth of inorganic semiconductor nanowires is important for their applications in nanoscale electronics and photonics. In this article, we discuss the rational growth, physical properties, and integration of nanowires based on the results from the authors' laboratory. The composition, diameter, growth position, and orientation of the nanowires are controlled based on the ...
متن کاملProtein self-assembly onto nanodots leads to formation of conductive bio-based hybrids
The next generation of nanowires that could advance the integration of functional nanosystems into synthetic applications from photocatalysis to optical devices need to demonstrate increased ability to promote electron transfer at their interfaces while ensuring optimum quantum confinement. Herein we used the biological recognition and the self-assembly properties of tubulin, a protein involved...
متن کاملWafer-Level Micro/Nanosystems Integration and Packaging
Micro/nanosystems have attracted considerable interests and seen significant advances over the years. The huge gap between technology development and commercialization can be largely attributed to the challenges faced in the integration and packaging of the devices. The packaging has to work around the diverse functional requirements while ensuring that the device is able to perform effectively...
متن کاملTOPICAL REVIEW Semiconductor nanowires
Semiconductor nanowires (NWs) represent a unique system for exploring phenomena at the nanoscale and are also expected to play a critical role in future electronic and optoelectronic devices. Here we review recent advances in growth, characterization, assembly and integration of chemically synthesized, atomic scale semiconductor NWs. We first introduce a general scheme based on a metal-cluster ...
متن کاملApproaching Programmable Self-Assembly from Nanoparticle-Based Devices to Integrated Circuits
This paper reports on two methods to enable the manufacturing of hybrid nano and micrometer sized systems: (i) electrostatically directed self-assembly of nanoparticles and nanowires to form nanoparticle and nanowire based devices, and (ii) surface tension driven self-assembly of micrometer sized components to form multi-component hybrid microsystems. Both self-assembly techniques are programma...
متن کامل